
Monitoring GRID Resources – JMX in Action

K. Bałos, D. Radziszowski, P. Rzepa, K. Zieliński , S. Zieliński

Department of Computer Science

AGH-UST

Abstract
This paper summarizes research on monitoring GRID resources, which results in JIMS system
implementation. It contains an overview of most important architectural and software
concepts that make the constructed system very flexible and easy to use. The paper evaluates
JMX and Web Service technologies as foundation for implementing monitoring systems.
Particular attention was put on system adaptability, autoconfiguration, and interoperability.

1 Introduction

Monitoring of distributed computer system resources is an integral part of any management
activity. The grid computing concept [] addresses issues related to accessibility and
transparent sharing of distributed computational, storage and communicational resources
among group of users, putting the management aspects at the first place in grid research.
Recently, the grid research community has been inspired by a new approach based on SOA
(Service Oriented Architecture) [16]. The most widely used way of implementing this type of
systems is to use Web Services. Exposing system functionality, computation or visualization
modules as services seems to be a very powerful and elegant approach. Because services are
going to be the components that are shared between users, they should be monitored and
managed similarly to hardware infrastructure. Such approach raises the requirement of
uniform approach to monitoring and management of hardware and software resources. The
dynamic character of the grid systems configuration requires searching for a system enabling
instrumentation and activation of monitoring on demand at runtime.
Taking these general trends and requirements into account, three years ago the Distributed
Systems Research Group – a group of scientists from the Department of Computer Science at
AGH-UST started research on applying JMX [19, 20] and Jiro [21] technologies to
monitoring grid infrastructure. That research activity has been carried out as a task of the
CROSSGRID Project [22]. The research resulted in construction of a few prototype systems,
which have been reported in M.Sc. thesis[18] and articles [8, 11]. The most advanced
monitoring system constructed so far is JIMS, which is deployed in the CROSSGRID testbed
system.

This paper summarizes the application of JMX in context of monitoring grid systems. It
contains an overview of most important architectural and software concepts that makes the
constructed systems very flexible and easy to use.

The structure of the paper is as follows. Section 2 consists of an overview of constructed
systems’ general architecture. It clarifies the multi-layer system design and specifies the
technology used for implementation of each layer. Section 3 presents the deployment and
configuration management aspects of monitoring system. Particular attention was put to

present dynamic discovery of monitored resources and the monitoring system auto-
configuration features. Also a concept of on-demand instrumentation has been discussed.
Next, section 4 covers the topics of collection and distribution of monitored data. Various
techniques for accessing monitored resources have been briefly described and compared. In
Section 5 the problem of storing monitoring data has been discussed in more detail. The
section discusses also the problem of designing a universal database schema in a way flexible
enough for adaptation to different requirements of monitoring applications. Section 6 contains
description of requirements for and prototypes of user interfaces for monitoring systems. The
paper is ended with conclusions.

2 Monitoring system architecture

The monitoring system presented in this paper has been constructed in accordance to
contemporary trends in distributed systems architecture expressed by Service Oriented
Architecture (SOA) [16]. Systems of that class are decomposed into smaller components
responsible for providing functionality of particular services. Because the adaptability and
fault tolerance of large-scale networked distributed systems is of high importance, the
components of a system can migrate or be duplicated. Moreover, the environment, in which a
distributed system is run, can have a fluctuating nature. Since that, large distributed systems
have to be able to adapt to changing network conditions.

The aforementioned issues impose new requirements on the underlying architecture. The most
important of them are effective coupling of internal system services, describing information
flow, implementing communication channels, maintaining security etc. The services a
SOA-compliant distributed system is built from are expected to support introspection, be
discoverable, loosely coupled and platform, location and transport independent. There are a
number of middleware platforms that help to cope with the requirements. A good example of
such platform for implementing a monitoring system are Web Services (WS) providing access
to the system functionality built with Java Management Extension (JMX) support.

A system for monitoring grid resources should have scalable and flexible architecture, easy
for development and maintenance. JIMS, the JMX-based Infrastructure Monitoring System –
developed by the DSRG at AGH-UST, meets the requirements for monitoring systems
operating in distributed environment, and supports resources abstraction, dynamic system
configuration and interoperability. Being based on SOA principles, it makes use of modern
technologies and solutions, such as JMX, Web Services, dynamic discovery and automatic
configuration.

The JMX architecture consists of three levels: instrumentation, agent, and distributed
services. The current version of the JMX specification [19, 20] addresses the first two levels
and provides only a brief overview of the latter. JMX provides interfaces and services
adequate to monitoring and management systems requirements [8]. This functionality
involves abstracting resources by using components called MBeans (Managed Beans) and
remote instrumented resources accessibility through JMX connectors. The functionality
developed by JIMS project exploits dynamic discovery of monitored resources. In order to
achieve more flexibility and interoperability, Web Service provides monitored objects’
proxies that are used to implement lightweight clients. The architecture of JIMS is shown
below in Fig.1. The monitoring system is decomposed into the following layers:

1. resources instrumentation layer (JMX MBean Servers, SNMP, RMI),

2. interoperability layer (SOAP Gateways, Web Services),

3. integration layer implemented with UDDI,

4. interface and presentation (GUI: web applications and standalone visualization tools,
CLI applications, Java API).

The resources instrumentation layer is responsible for delivery and management of
information from monitored resources. Its functionality includes reading and writing attributes
of monitored components (MBeans), performing measurements (for example, network latency
and throughput) and sending notification triggered by pre-programmed conditions.

Main agent – Global
Discovery Service

Proxy agent (SOAP GW)

 Monitoring
 agent

 Monitoring
 agent

 Monitoring
 agent

 Monitoring agent (MBean Server

 CPU, memory & processes (JNI, proc)

 Network state (SNMP)

 Network metrics (UDP, ICMP)

Proxy agent (SOAP GW) Proxy agent (SOAP GW)

Fig. 1. The modules of JIMS

The instrumentation layer obtains information from monitored resources using the following
mechanisms:

- Java Native Interface (JNI) for reading virtual file system (/proc),

- SNMP agent running locally on monitored system (usually on each Worker Node
in a site). These agents communicate with monitoring system through SNMP
protocol using SNMP API [15] to be accessible from Java.

- Network Metrics module, measuring network condition using standard protocols
like ICMP and UDP.

The information from the instrumentation layer is made available for further use by JMX RMI
connectors, which connect Monitoring Agents with SOAP Gateways, which build up the
interoperability layer of the proposed architecture.

SOAP Gateways act as translators between Java RMI and SOAP and are implemented
as AXIS-based Web Services, exposing all monitored parameters in a uniform way. It is
important that all monitored agents can be accessed directly using RMI and SNMP protocols
or alternatively through SOAP, which is the preferred protocol for outer applications and
visualization tools. SOAP Gateways play also an important role in dynamic configuration of
the system and discovery of its entities. They are responsible for finding all currently running
monitoring agents. The integration layer performs global discovery and keeps track of all
currently running SOAP Gateways. The proposed hierarchical architecture is suitable for
large distributed systems and offers required scalability. JIMS layered architecture will be
further elaborated in the following sections.

3 Monitored data acquisition

Classical network monitoring systems are usually centralized applications that monitor
resources through direct management of associated agents acting as their representatives. An
agent executes commands, gathers data and reads resources’ state. It is typically a plain entity
without any intelligence that could allow making decisions, placed close to the managed
resource. An agent’s role is limited to tasks delegated by a central management system.

JMX monitoring services are executed directly on the resource level. JMX agents are
autonomous entities equipped with a proper level of intelligence for performing self-
determined actions, thus relieving a management center of executing usual tasks such as
querying resources’ state. At the same time, it decreases network load and increases
scalability of the monitoring system. JMX standardizes interfaces for monitoring resources
that enable anyone to use arbitrary technology for building monitoring applications. Those
applications can easily access monitored resources communicating through a JMX agent.
Furthermore, the environment provides a distributed management model independent from
any communication protocol. Given that, an application can rely on a particular API instead
of properties of a specific protocol.

3.1 Event distribution model

JMX delivers the three basic monitoring modes: sampling (pull-mode), tracing (push-mode)
and periodic notification on events. The user is able to choose the most suitable monitoring
data delivery mode that depends on application. The architecture of JMX permits an MBean
to broadcast event notifications both to other MBeans and to management applications acting
as observers. In the simplest case, observers reside in the same Java Virtual Machine (JVM)
as an MBean generating events. This situation enables an observer to register for notification
either directly in an event-source MBean or through an MBean server. The way the
registration is performed doesn’t influence a path that an event traverses from event
broadcaster to observers - they always go directly to the listener. In more complicated
scenario, observers do not share a JVM with the event source and possibly operate on a
different host.

Fortunately, JMX architecture hides the fact of physical separation through connector
mechanism and in this way provides observers with transparent access to event sources. Use
of connectors reduces collaboration to transferring registration requests from remote
observers to an MBean representing particular resource and transferring notifications in the
reverse direction. This notification model is based on a Java event model constrained to a
single virtual machine. Such a construction introduces a need for local proxy mechanism - a
connector server has to create local observers that store received notifications in a buffer. The
connector server is expected to deliver the messages to remote observers at a later time. On
the other hand, the proxy mechanism has some advantages: it permits to introduce a variety of
event delivery policies and enables to choose appropriate policy according to the adopted
quality of service.

In the JMX's notification model, event reports can be emitted by MBean instances and by the
MBean Server, generally on specific changes of the MBean's attributes which are the fields or
properties of the MBean's management interface. The mechanism for detecting changes in
attributes and triggering the notification of events is not a part of JMX specification, at least in
its current release. The attribute change notification behavior is therefore generally dependent
upon the implementation of each MBean. The monitor MBeans are exceptional – they are in
fact predefined sensors performing periodic sampling of an attribute of the MBean they

observe. The three types of monitor MBeans that are provided in every JMX implementation
are CounterMonitor, GaugeMonitor and StringMonitor. If switched on, each of them
automatically sends a relevant notification when a specific set of conditions concerning the
value of the observed attribute is satisfied.

A JMX-enabled client application in may register as a notification listener with a notification
broadcaster MBean and receive notifications on all events that may occur in the broadcaster,
i.e. the listener's handleNotification() method will be invoked when any notification is issued
by the MBean (an explicit implementation of the Observer design pattern [7]).

3.2 Multiprotocol access interface

The JMX architecture solves the problem of communication with monitoring systems by
leveraging a variety of communication protocols. Monitoring applications developed in Java
perform operations on remote objects and receive notifications from these objects through
local representatives called proxies. The communication process between a proxy and its
relevant remote object is hidden from clients. It is carried out by dedicated system
components called connector client and connector server. These components enable mutual
communication over diverse protocols such as RMI, HTTP/TCP or HTTP/SSL.

Other monitoring systems that use different protocols, such as HTML or SNMP, can connect
to JMX agent through a specific protocol adapter. The HTML adapter, for example, renders
MBean interfaces as web pages. SNMP adapter exposes SNMP MIBs representing MBeans
that respond to SNMP commands.

The JMX architecture allows enclosing vendor-specific connectors and adapters that use
arbitrary communication protocols. This proves that JMX is an open solution that makes
collaboration with any existing monitoring or managing system possible.

3.3 Additional useful JMX services

JMX architecture introduces a powerful concept of service agent that facilitates monitoring
and managing creation of application. Basic functionality of service agents can be described
as follows:

• Querying and filtering --- provides clients with possibility of searching for MBeans.
The search criteria include MBean full or partial name as well as expressions based on
current MBean attribute values. The query results in a list of managed resources that
can be subsequently used to invoke the elements’ operations.

• Dynamic loading --- the service supports uploading a Java class from any network
location and using it to construct an MBean object that can be later registered in an
MBean server. This feature establishes a mechanism for enhancing existing agent
functionality and introducing new resources to continuously operating environment.

• Monitoring service --- supplies a mechanism for polling MBean attribute values. It is
possible to observe numerical attributes, floating point attributes that fit to a specified
range and character string attributes in the terms of pattern matching.

• Timer service --- brings a mechanism for triggering notifications to registered listeners
at a specified time enabling them to run particular action at that moment. The service
makes possible to define single or periodic notifications and manages a list of dated
notifications that determine the launch of actual action sequence.

The aforementioned issues cause the JMX architecture to be considered a leading technology
that integrates management and monitoring in the data collection layer.

4 System deployment and configuration

Deployment and configuration of JIMS system is based on standard techniques taken from
reference implementation of JMX built by SUN Microsystems (dynamic on-demand
instrumentation layer and M-Let service), and some mechanisms, like discovery, and dynamic
auto-configuration, are being developed by DSRG group itself.

4.1 System installation and startup

JIMS system startup process relies on mechanisms for loading software on demand to
dedicated system modules. JMX technology supports such functionality with its M-Let
(dynaMic appLet) Service. The service provides online loading and installation of java
classes. Usage of the service in JIMS is depicted in Fig. 2.

Management
station

MLet service
SOAP gateway
Dynamic discovery
Join agent

Monitored station

Monitoring agent

Monitored station

Monitored station

Monitored station

Monitored station

Download
SystemInformation.jar

SNMP.jar
Management
station
Management
station

MLet service
SOAP gateway
Dynamic discovery
Join agent

Monitored stationMonitored stationMonitored station

Monitoring agent

Monitored stationMonitored stationMonitored station

Monitored stationMonitored stationMonitored station

Monitored stationMonitored stationMonitored station

Monitored stationMonitored stationMonitored station

Download
SystemInformation.jar

SNMP.jar

Fig. 2. JIMS components download and installation

Using the service, monitoring agents are automatically installed and run in a cluster.
Management station starts all pre-installed monitoring agents, which then download and
install monitoring modules, which are components of the instrumentation layer. It is important
that these modules can be deployed (downloaded, installed and started) automatically at start
time or at any time later. It is possible to upgrade or install newly developed modules as well
as removing existing one without restarting the whole monitoring system.

4.2 Interoperability issue

The SOAP Gateway (SG) concept is based on general approach described in OGSI
(Open Grid Services Infrastructure) specification [12], where grid service is exposed as WS
defined using WSDL (Web Service Definition Language), conforming to a set of conventions
(interfaces and behaviours) that specify how clients and services interact. The SG concept is
also based on architectural approach taken from OGSA (Open Grid Services Architecture)
[13].

Just as in case of other grid services, the layer of interoperability for infrastructure monitoring
system should support transient service instances, created and destroyed dynamically, and
give unified way to access all monitored resources. SG allows hiding the complexity of
managing monitored stations and exposes interfaces consistent with other grid services.
Because clusters in grids consist of many monitored computing elements, the interoperability
layer should also perform the role of router, forwarding requests from one outer point of
communication to specified node. To achieve this goal it should store addresses of all
available monitored stations. In big installations with hundreds of nodes, administrative
assigning of RMI address of each monitored station in SG would clearly be ineffective. To
solve the problem of registering new stations appearing in a cluster with SG, as well as
deleting inactive ones from the registry, a mechanism of active stations discovery is used. The
proposed interoperability layer assumes one SOAP Gateway per cluster. In some cases SG-s
can be doubled for fail-over purpose.

SG resides in a multiprotocol environment, i.e. with SOAP at the external system side, and
Java RMI at the side of monitored stations. Because of that, it should perform a role of
translator, connecting itself to monitored nodes through RMI connectors and to client
applications through WS.

Summarizing, the proposed interoperability layer supports:

a. automatic installation to facilitate management of numerous nodes in clusters,

b. automatic configuration with dynamic discovery mechanisms for finding monitored
stations that are currently available and heart beat mechanism for removing stations
that do not operate properly and are not responding for a certain period of time,

c. self-adaptation mechanism (dynamic discovery and heart beat) from the user,

d. exposing one point of communication through one - due to firewalling - well defined
application address and port, with WSDL describing its functionality,

e. forwarding requests from WS clients to specified monitored stations [11].

4.3 Automatic and Dynamic Configuration

SG autoconfiguration is based on two mechanisms: dynamic discovery and heartbeat. First
mechanism uses Discovery Monitors at the side of SG and Discovery Responders in
monitored stations in order to provide Active Discovery in much the same way as in JDMK
[14]. SG periodically sends multicast requests to all monitored stations, and they respond with
their RMI addresses of JMX connectors. The second mechanism, heartbeat, is a
complementary process to discovery mechanism and is used for finding monitored stations
that do not respond for some reasons. If a station is not responding repeatedly for a certain
number of times, it is removed from the SG registry and is no longer available. For this
purpose each station registered in SG has its own counter of retries which is started after first
access failure.

As it can be expected, SG requires very little logic on the client side of application,
because whole logic can be hidden behind the interoperability layer. It encapsulates the
complexity of discovery and heartbeat mechanisms. The advantage of using SG as the point
of access to monitoring data is location transparency of monitored resources. Each change of
the monitoring station (vanishing or changing JMX RMI address – due to MBean server
restart or physical crash) is handled by a SOAP Gateway, so the client application each time
obtains proper list of valid and active monitored resources.

5 Monitored data warehouse

The key point of the data warehouse module in an open monitoring system is to create a
universal database for storing data obtained from monitored resources. Such a database should
support heterogeneity of resources as well as dynamic attributes setup, and provide uniform
access interface for all kinds of monitoring data. There is lot of important factors that have to
be taken into account while creating such model, the most crucial ones follow:

• Dynamic attributes definition – the list of attributes describing a monitored resource
has to be easily extendable.

• Fine grained data support – ability to store each monitored attribute data item
separately, data that are more interesting or that change more frequently may be
logged more often independently of other data from the resource.

• Support for heterogeneous resources – possibility for storing data from complete
different areas of interest e.g. host, network and storage.

• Uniform access - one common interface for access to heterogeneous dynamic data
stored in a system has to be created.

The whole model built to meet these general requirements is quite complex, so we only
describe the major issues of the proposed solution.

5.1 Data model

The types of data stored in the system may be divided into two groups; first - metadata -
describes an environment (resources and attributes), while the second is formed by monitoring
data values themselves.

Metadata specify:

- site — has the same meaning as in grid terminology and is used for narrowing
resources in different geographical locations

- kind — is the group of homogenous resources having some common attributes (e.g.
computer, network device)

- resource — is the group of simple (String) data describing a source of monitoring
data; it has a name, description and unique identification string

- attribute — represents an attribute exposed by the resource for monitoring; there are
two types of attributes: simple for simple attributes and compound for attributes that
have sub-attributes (e.g. ‘location’ attribute may have ‘street’ and ‘city’
sub-attributes). Both of them may be vector or scalar – depending of the values they
represent.

The values of monitored attributes may have different types. The system supports the
following primitive types:

- String – for textual data

- Long – for all Integer values

- Float – for floating point values

These three types are sufficient to represent a variety of commonly used simple data and are
successfully used in e.g. SNMP[1]; more complex data like structures and vectors are
specified by appropriate definition of metadata layer.

5.2 Data warehouse access

The system will expose three independent interfaces: data store interface, enabling data
collection layer to store the data; data access interface that makes querying and data access
possible, and the administration interface designed for administrative purposes. Each of the
system interfaces will be accessible remotely and, if desired, it will be possible to make use of
the business delegates pattern [3].

Data store interface

The key role of this interface is to accept data coming form the data collection layer. This
process will consist of two basic parts: metadata layer configuration and storage of attributes’
values. Because the values of the monitoring attributes need semantic context, appropriate
configuration of metadata layer is a key point for further data processing. The configuration
process starts with registration of a new resource, and then all monitored attributes of this
resource are registered. Note that an attribute set may be extended in any time if the
resource’s agent decides to monitor additional attributes. After the initial configuration phase
the values of resource’s attributes may be stored. The interface will support both individual
values and packets containing sets of values. Because the lower layer (built upon JMX)
supports all basic monitoring models, only the ‘push’ model for this interface is required.

Data access interface

Access to the monitoring data is based on a dialog between a client and the system. A client
will specify in more and more details which data it is interested in. First of all it will be
required to select sites, kinds of resources and resources by choosing form the list of all
monitored resources or by specifying names of the resources. As a response, it will receive the
list of each resource’s monitored attributes. It will have access to all the additional data that
are stored together with attributes e.g. name, description, and unit. Next, it will have to point
out, which attributes it is interested in (it may select simple attributes, compound attributes
with scalar or vector values) and set time clauses (e.g. from-to, all up to now, all older than).
Finally, it will receive the desired data according to the selection made. This entire dialog will
be kept opaque by appropriate classes according to the common OOP directives.

Similarly to the data store interface, data access interface will expose a programmer interface
according to the business delegate pattern and additionally will be accessible from a web
browser.

Administrative interface

As the volume of collected data will grow very quickly, a mechanism for maintenance and
especially for removing unneeded data is required. The administrative interface will also
allow for setting or changing descriptions and units in metadata. It will be based on a web
interface and will be accessible form a web browser.

5.3 Implementation and efficiency issues
Because the system is designed as a multi-tier, distributed application, the proposed platform
for the implementation of the system is J2EE. This environment offers EJB as standard

mechanism for implementation of database access. This solution could be further enhanced
with load balancing, fail-over and security mechanisms. Another key implementation issue is
the efficiency of the proposed solution. The usage of scalable application servers is very
helpful but adequate design of the system and its configuration is even more important. The
current project stage assumes usage of J2EE persistence concept (CMP, DAO or JDO) for the
meta-data layer mostly because the meta-data management is quite complicated. Its object
oriented structure suits perfectly to this concept and efficiency is not crucial. The already
performed tests showed that this approach is not useful for collecting monitored attributes’
values. These data are supposed to be processed much more efficiently by direct JDBC calls
that ensure minimal time overhead.

6 User interface construction

Grid environment is set up by substantial number of objects that can be and actually are
monitored. The monitored objects usually have numerous attributes that define their state.
Both issues imply existence of almost unlimited quantity of information that can be presented
to an end user in order to let him monitor grid activity. The amount of data provided by JIMS
and diversity of data sources make the problem of providing user-friendly access to grid state
challenging. In order to be useful, the system modules dedicated for collaboration with end
user, should meet the following requirements:

• allow reviewing all the monitored objects and their attributes,

• support efficient, scalable selection of specific grid components,

• allow examination of values of selected attributes,

• allow concurrent examination of values of several attributes,

• allow viewing values in various formats — for example text-based, graphic charts,
XML,

• provide means for inspecting the history of monitored object attributes,

• have flexible graphic interfaces adjusting to various end-devices,

• provide authorized access to monitored values per user or role basis.
The implemented system introduces several client applications for different levels of grid
state examination:

• a text-based and standalone java application that access system through web services,

• an HTTP access based on built-in html adapter,

• a standalone java application acting as an SNMP client,

• a web application accessing monitored data warehouse.

6.1 Web services based clients

The system implements two types of clients based on web services access that exhibit grid
state to the user: a text-based application and a standalone java application. The former is only
an example of using web services interface in text-based clients and expose latency and
throughput among monitored objects in a cluster (see Fig.3). The latter is a powerful
application that enables users to select appropriate cluster, monitored object, the object’s

attribute and to view its value (see Fig.4). A user can launch multiple applications in parallel
in order to monitor many attribute values at the same time. The application is equipped with
advanced features allowing for example to monitor a selected attribute constantly. That
characteristic permits to exhibit the sequence of attribute’s values in the near history as a
graphic chart.
[dsrg@maksi bin]$./cg-jims-client 149.156.9.15
JIMS client v 1.4
Timestamp for [Ut]: ts=1081997570476
149.156.9.44: Ut=11163238 ICMP lat: 0.212 [ms], Throughput: 2.8106666666666668E7 [bit/s]
149.156.9.23: Ut=11884675 ICMP lat: 0.125 [ms], Throughput: 2.8106666666666668E7 [bit/s]
149.156.9.26: Ut=7141152 ICMP lat: 0.132 [ms], Throughput: 2.409142857142857E7 [bit/s]
149.156.9.39: Ut=7621342 ICMP lat: 0.161 [ms], Throughput: 2.8106666666666668E7 [bit/s]
149.156.9.20: Ut=171871991 ICMP lat: 0.129 [ms], Throughput: 340686.8686868687 [bit/s]
149.156.9.16: Ut=10230438 ICMP lat: 0.126 [ms], Throughput: 2.8106666666666668E7 [bit/s]
149.156.9.18: Ut=120823614 ICMP lat: 0.141 [ms], Throughput: 2.8106666666666668E7 [bit/s]
149.156.9.24: Ut=8538910 ICMP lat: 0.13 [ms], Throughput: 2.8106666666666668E7 [bit/s]

Fig. 3. Command line web services based client

Fig. 4. Standalone Java client leveraging web services

6.2 HTTP client

The JIMS system offers also HTTP-based access to all monitored resources that are equipped
with a JMX HTTP adapter (see Fig.5). It is a simple but powerful way of accessing monitored
objects that gives a full access to the monitored object functionality. The user must know a
URI of a monitored object as a prerequisite. After providing the URI he is able to view the list
of monitored object’s attributes, read the attribute value and, if it the monitored object allows
that, to set the value. When an object expose some operations that can be called upon it, the
HTTP interface enables users to invoke them. A user is able to supply the operation with
suitable argument list, invoke it on an object and view the results. This client is able to present
the last known value of an attribute. In order to see how the attribute value fluctuates one
should make use of either the web services based standalone java application or data
warehouse client described in Section 6.

Fig. 5. HTTP-based access to MBean functionality

6.3 SNMP client

The system introduces a standalone java client application that utilizes SNMP to connect to
monitored resources. The SNMP client enables user to access any monitored resource
equipped with JMX SNMP adapter. The user must specify an IP address of a resource and
then he gets access to the standardized management information base. It is possible to review
all attributes of a monitored object and get a textual attribute value. When a managed object
exposes an interface that enables to invoke some operation on this object, it is impossible to
do so through SNMP client. This is not a limitation of the SNMP client, but SNMP protocol
itself, which restricts the interaction with a managed object to getting or setting a value of its
attributes.

Fig. 6. SNMP based client application

6.4 Data warehouse client

The last client interacts not with the active grid itself, but with the grid image stored in the
monitored data warehouse. This is not a weakness of a client or a solution, however. The
warehouse keeps the up to date view of a grid state as well as a history of the grid activity and
in this way exposes grid resources with the broader characteristic than just the most recent
state, as it happens to the other clients. With the data warehouse the client is a user able to
select a proper attribute or resource to view its state it two different ways. It can walk through
the hierarchy of grid components selecting a site, then a kind, next a resource, after that an
attribute and recursively an attribute’s sub-attribute. The second method is more scalable: a
user is capable of selecting proper components relying upon a component state, fixed in a
time constraints. The client application uses a query language specified by a monitored data
warehouse interface. As an example of such query consider “Select all computers that CPU
load has been greater that 80% during last hour”. After selecting proper components the user
is able to specify time constraints in which the client wants to review components state. The
subsequent action is to determine the way the results should be presented. The user can
choose text-based documents, html pages, XML documents and finally graphic charts to
review the values of selected attributes.

Another interesting feature of that client is built-in internationalization support. At this
moment it is possible to customize user interface to work in English or Polish. An example of
such client is presented in Fig.7.

Fig. 7. Data warehouse client

7 Conclusions

The presented paper summarizes research on monitoring systems for grid infrastructure. Such
class of systems is characterized by multi-layer structure and wide spectrum of technologies
that should be very carefully selected for their implementation. The adaptability and
configurability requirements make the JMX technology the most suitable for the
instrumentation and agent layers implementations. The interoperability issues put Web
Services on the first place among technologies offering support for SOA implementation. This
technology is going also to be most suitable when integration problems have to be resolved.

Considering monitoring data storage and their accessibility, EJB technology seems to be a
very natural choice. Efficient usage of this technology requires a lot attention that must be put
especially when persistency mechanisms are implemented. For monitoring data storage, direct

JDBC-based access to database seems to be most appropriate. The different technologies
employed result in different client applications offering access to collected by JIMS
monitoring data. An advantage of the proposed solution is that it is built over open standards
that makes JIMS easier to be extended and deployed in any environment.

Acknowledgements
We would like to thank our students, L. Bizoń, B. Ławniczek, G. Majka, J. Midura, M.
Rozenau, T. Sekman and M. Smęt, for their great contribution to the development of JIMS.

8 Bibliography

1. William Stallings “SNMP, SNMP v2 and CMIP – The Practical Guide to Network-
Management Standards” Addison-Wesley 1993

2. Ed Roman, Scott W. Ambler “Mastering Enterprise JavaBeans“ Jhon Wiley&Sons
Inc. 2002

3. Floyd Marinescu “EJB Design Patterns” Wiley&Sons Inc. 2002

4. Mike Jasnowski “JMX Programming” Wiley&Sons Inc. 2002

5. Bruce Eckel, Thinking in Java, edycja polska, Wydawnictwo Helion, 2001

6. Global Grid Forum, http://www.gridforum.org

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design Patterns, Addison-Wesley
(1994) 273-283

8. Jacek Midura, Kazimierz Bałos, Krzysztof Zieliński “Global Discovery Service for
JMX Architecture” ICCS 2004 Krakow

9. Aleksander Laurentowski, Krzysztof Zieliński „Integracja systemów B2B: JMX”,
TeleNetForum 2002

10. K. Bałos, S. Zieliński, JIMS – the JMX Infrastructure Monitoring System,
http://www.eu-crossgrid.org/Seminars-INP/JIMS_monitoring_system.pdf

11. K. Bałos, L. Bizoń, M. Rozenau, K. Zieliński, Interoperability Architecture for Grid
Networks Monitoring Systems, CGW ‘03

12. The Open Grid Services Infrastructure Working Group (OGSI-WG): OGSI
Specification, http://www.ggf.org/ogsi-wg

13. The Open Grid Services Architecture Working Group (OGSA-WG): Globus Tutorial,
www.globus.org/ogsa/

14. Sun Microsystems, JDMK, http://java.sun.com/products/jdmk

15. Westhawk’s Java SNMP v4.13, http://snmp.westhawk.co.uk/

16. James McGovern et al., A Practical Guide to Enterprise Architecture, Prentice Hall
PTR, 2003

17. http://www.serviceoriented.org/service_composition.html

18. T. Sekman, M. Smęt, Dynamicznie konfigurowalny system monitorowania zasobów
gridowych, M.Sc. Thesis, Kraków 2004

19. Sun Microsystems, Java(TM) Management Extensions (JMX TM) Reference
Implementation v1.2, http://java.sun.com/products/JavaManagement/download.html

20. Sun Microsystems, Java(TM) Management Extensions (JMX TM) Remote API 1.0
Early Access 2, http://developer.java.sun.com/developer/earlyAccess/jmx/

21. Sun Microsystems, JIRO™ Technology, www.jiro.com

22. EU CrossGrid Project, www.crossgrid.org

